By Topic

Multiphase LBM Distributed over Multiple GPUs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rosales, C. ; Texas Adv. Comput. Center, Univ. of Texas at Austin, Austin, TX, USA

A parallel distributed CUDA implementation of a Lattice Boltzmann Method for multiphase flows with large density ratios is described in this paper. Validation runs studying the terminal velocity of a rising bubble under the effect of gravity show good agreement with the expected theoretical values. The code is benchmarked against the performance of a typical CPU implementation of the same algorithm on both AMD and Intel platforms, and a single GPU is observed to perform up to 10X faster than a quad-core CPU socket, a 40X speedup with respect to a single core. The code is shown to scale well when executed on multiple GPUs, which makes the port to CUDA valuable even when compared to parallel CPU implementations.

Published in:

Cluster Computing (CLUSTER), 2011 IEEE International Conference on

Date of Conference:

26-30 Sept. 2011