By Topic

Distributed Compressive Sampling for Lifetime Optimization in Dense Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Carlo Caione ; Department of Electronics and Computer Science, University of Bologna, Bologna, Italy ; Davide Brunelli ; Luca Benini

The problem of data sampling and collection in wireless sensor networks (WSNs) is becoming critical as larger networks are being deployed. Increasing network size poses significant data collection challenges, for what concerns sampling and transmission coordination as well as network lifetime. To tackle these problems, in-network compression techniques without centralized coordination are becoming important solutions to extend lifetime. In this paper, we consider a scenario in which a large WSN, based on ZigBee protocol, is used for monitoring (e.g., building, industry, etc.). We propose a new algorithm for in-network compression aiming at longer network lifetime. Our approach is fully distributed: each node autonomously takes a decision about the compression and forwarding scheme to minimize the number of packets to transmit. Performance is investigated with respect to network size using datasets gathered by a real-life deployment. An enhanced version of the algorithm is also introduced to take into account the energy spent in compression. Experiments demonstrate that the approach helps finding an optimal tradeoff between the energy spent in transmission and data compression.

Published in:

IEEE Transactions on Industrial Informatics  (Volume:8 ,  Issue: 1 )