By Topic

Discriminating DDoS Attacks from Flash Crowds Using Flow Correlation Coefficient

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shui Yu ; Sch. of Inf. Technol., Deakin Univ., Burwood, VIC, Australia ; Wanlei Zhou ; Weijia Jia ; Song Guo
more authors

Distributed Denial of Service (DDoS) attack is a critical threat to the Internet, and botnets are usually the engines behind them. Sophisticated botmasters attempt to disable detectors by mimicking the traffic patterns of flash crowds. This poses a critical challenge to those who defend against DDoS attacks. In our deep study of the size and organization of current botnets, we found that the current attack flows are usually more similar to each other compared to the flows of flash crowds. Based on this, we proposed a discrimination algorithm using the flow correlation coefficient as a similarity metric among suspicious flows. We formulated the problem, and presented theoretical proofs for the feasibility of the proposed discrimination method in theory. Our extensive experiments confirmed the theoretical analysis and demonstrated the effectiveness of the proposed method in practice.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 6 )