By Topic

Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. A. T. Figueiredo ; Dept. de Engenharia Electrotecnica e de Comput., Inst. Superior Tecnico, Lisbon, Portugal ; J. M. N. Leitao

Discontinuity-preserving Bayesian image restoration typically involves two Markov random fields: one representing the image intensities/gray levels to be recovered and another one signaling discontinuities/edges to be preserved. The usual strategy is to perform joint maximum a posterori (MAP) estimation of the image and its edges, which requires the specification of priors for both fields. Instead of taking an edge prior, we interpret discontinuities (in fact their locations) as deterministic unknown parameters of the compound Gauss-Markov random field (CGMRF), which is assumed to model the intensities. This strategy should allow inferring the discontinuity locations directly from the image with no further assumptions. However, an additional problem emerges: the number of parameters (edges) is unknown. To deal with it, we invoke the minimum description length (MDL) principle; according to MDL, the best edge configuration is the one that allows the shortest description of the image and its edges. Taking the other model parameters (noise and CGMRF variances) also as unknown, we propose a new unsupervised discontinuity-preserving image restoration criterion. Implementation is carried out by a continuation-type iterative algorithm which provides estimates of the number of discontinuities, their locations, the noise variance, the original image variance, and the original image itself (restored image). Experimental results with real and synthetic images are reported

Published in:

IEEE Transactions on Image Processing  (Volume:6 ,  Issue: 8 )