By Topic

A Three-Phase Current Reconstruction Strategy With Online Current Offset Compensation Using a Single Current Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Younghoon Cho ; Future Energy Electronics Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Thomas LaBella ; Jih-Sheng Lai

This paper proposes a three-phase current reconstruction technique with an online current offset compensation function for three-phase inverter applications utilizing only a single current sensor. In the proposed current sensing method, a phase current and a branch current are simultaneously measured twice in a switching period by using a single current sensor. After that, the current reconstruction algorithm is applied to obtain the three-phase current information. Compared to previous single current sensor strategies, in the proposed method, the sensor output is regularly sampled, and the dead zone is located near the boundary of the voltage vector space instead of near the origin and the borders of each sector. This boundary-neighbored dead zone makes the proposed method more attractive in extremely low modulation index cases because it avoids periodical dead zones which have been an issue in the existing methods. Moreover, the online compensation method for a current measurement offset makes it possible to achieve purely balanced three-phase current control without an offset component. The effectiveness of the proposed method has been verified through simulations and experiments by measuring and reconstructing three-phase currents under various conditions.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:59 ,  Issue: 7 )