Cart (Loading....) | Create Account
Close category search window
 

Multibiometric Cryptosystems Based on Feature-Level Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nagar, A. ; Dept. of Comput. Sci. & Eng., Michigan State Univ., East Lansing, MI, USA ; Nandakumar, K. ; Jain, A.K.

Multibiometric systems are being increasingly de- ployed in many large-scale biometric applications (e.g., FBI-IAFIS, UIDAI system in India) because they have several advantages such as lower error rates and larger population coverage compared to unibiometric systems. However, multibiometric systems require storage of multiple biometric templates (e.g., fingerprint, iris, and face) for each user, which results in increased risk to user privacy and system security. One method to protect individual templates is to store only the secure sketch generated from the corresponding template using a biometric cryptosystem. This requires storage of multiple sketches. In this paper, we propose a feature-level fusion framework to simultaneously protect multiple templates of a user as a single secure sketch. Our main contributions include: (1) practical implementation of the proposed feature-level fusion framework using two well-known biometric cryptosystems, namery,fuzzy vault and fuzzy commitment, and (2) detailed analysis of the trade-off between matching accuracy and security in the proposed multibiometric cryptosystems based on two different databases (one real and one virtual multimodal database), each containing the three most popular biometric modalities, namely, fingerprint, iris, and face. Experimental results show that both the multibiometric cryptosystems proposed here have higher security and matching performance compared to their unibiometric counterparts.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:7 ,  Issue: 1 )
Biometrics Compendium, IEEE

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.