By Topic

Synthesis of Real-World Driving Cycles and Their Use for Estimating PHEV Energy Consumption and Charging Opportunities: Case Study for Midwest/U.S.

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tae-Kyung Lee ; Dept. of Mech. Eng., Univ. of Michigan, Ann Arbor, MI, USA ; Adornato, B. ; Filipi, Z.S.

This paper analyzes plug-in hybrid electric vehicle (PHEV) behavior, its impact on the electric grid, and possible charging opportunities using representative synthetic cycles with the consideration of daily driving schedules. The representative naturalistic cycles are synthesized through a stochastic process utilizing transition probability matrices extracted from naturalistic driving data collected in the Midwest region of the United States. The representativeness of the cycles is achieved through the subsequent statistical analysis. The distributions of the departure/arrival time and the rest time, analyzed from the real-world data at the key locations, complete the picture to analyze vehicle daily missions and the PHEV impact on the grid. PHEV simulation is used to determine the battery state of charge (SOC) distribution upon arrival. The results for typical locations such as residential, work, large business, and small business allow the assessment of the PHEV impact on the grid and possible charging opportunities during daily missions.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 9 )