By Topic

Real-Coded Chemical Reaction Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lam, A.Y.S. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Li, V.O.K. ; Yu, J.J.Q.

Optimization problems can generally be classified as continuous and discrete, based on the nature of the solution space. A recently developed chemical-reaction-inspired metaheuristic, called chemical reaction optimization (CRO), has been shown to perform well in many optimization problems in the discrete domain. This paper is dedicated to proposing a real-coded version of CRO, namely, RCCRO, to solve continuous optimization problems. We compare the performance of RCCRO with a large number of optimization techniques on a large set of standard continuous benchmark functions. We find that RCCRO outperforms all the others on the average. We also propose an adaptive scheme for RCCRO which can improve the performance effectively. This shows that CRO is suitable for solving problems in the continuous domain.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:16 ,  Issue: 3 )