Cart (Loading....) | Create Account
Close category search window
 

Performance of Energy Harvester Using Iron–Gallium Alloy in Free Vibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ueno, T. ; Kanazawa Univ., Ishikawa, Japan ; Yamada, S.

We propose a micro energy-harvesting device, using an iron-gallium alloy (Galfenol), capable of generating electrical energy from ambient vibrations. Galfenol is a ductile magnetostrictive material with a high piezomagnetic constant, good machinability, and a large inverse magnetostrictive effect by which magnetization can be varied by mechanical stress. The device consists of two beams of Galfenol combined with iron yokes, coils, and a bias magnet. A bending force applied at the tip of the cantilever yields a flux increase by tensile stress in one beam, and a flux decreases in the other by compression. The time variation of the flux generates a voltage on the wound coils. This energy harvester has advantages over conventional types of device, such as those using piezoelectric materials, with respect to size, and efficiency, and it has high robustness and low electrical impedance. In addition, the structure needs only a low mechanical force to generate electricity. In this paper, the free vibration characteristic to accrue electric energy effectively is examined. From the experimental results, the energy conversion efficiency in the vibration is inverse proportional to the resonant frequency.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.