By Topic

Gradient estimation for sensitivity analysis and adaptive multiuser interference rejection in code-division multiple-access systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. B. Mandayam ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; B. Aazhang

In this paper, we consider a direct-sequence code-division multiple-access (DS-CDMA) system in the framework of a discrete-event dynamic system (DEDS) in order to optimize the system performance. Based on this formulation, we develop infinitesimal perturbation analysis (IPA) for estimating the sensitivity of the average probability of bit error to factors ranging from near-far effects to imperfections in power control. The above estimates are shown to be unbiased, and this technique is then further incorporated into a stochastic gradient algorithm for achieving adaptive multiuser interference rejection for such systems, which is also subject to frequency nonselective slow fading. We use an IPA-based stochastic training algorithm for developing an adaptive linear detector with the average probability of error being the minimization criterion. We also develop a practical implementation of such an adaptive detector where we use a joint estimation-detection algorithm for minimizing the average probability of bit error. A sequential implementation that does not require a stochastic training sequence or a preamble is also developed

Published in:

IEEE Transactions on Communications  (Volume:45 ,  Issue: 7 )