By Topic

A Maximum Power Point Tracking Technique for Partially Shaded Photovoltaic Systems in Microgrids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Alajmi, B.N. ; Dept. of Electron. & Electr. Eng., Univ. of Strathclyde, Glasgow, UK ; Ahmed, K.H. ; Finney, S.J. ; Williams, B.W.

A modified fuzzy-logic controller for maximum power point (MPP) tracking is proposed to increase photovoltaic (PV) system performance during partially shaded conditions. Instead of perturbing and observing the PV system MPP, the controller scans and stores the maximum power during the perturbing and observing procedures. The controller offers accurate convergence to the global maximum operating point under different partial shadowing conditions. A mathematical model of the PV system under partial shadowing conditions is derived. To validate the proposed modified fuzzy-logic-based controller, simulation and experimentation results are provided.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 4 )