By Topic

Automatic Deployment of Robotic Teams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xu Chu Ding ; Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA. ; Marius Kloetzer ; Yushan Chen ; Calin Belta

A major goal in robot motion planning and control is to be able to specify a task in a high-level, expressive language and have the robot(s) to automatically convert the specification into a set of low-level primitives, such as feedback controllers and communication protocols, to accomplish the task. The robots can vary from manipulator arms used in manufacturing or surgery, to autonomous vehicles used in search and rescue or in planetary exploration, and to smart wheel chairs for disabled people. They are subject to mechanical constraints (e.g., a carlike robot cannot move sideways,an airplane cannot stop in place) and have limited computation, sensing, and communication capabilities. The environments can be cluttered with possibly moving and shape-changing obstacles and can con tain dynamic (moving, appearing, or disappearing) targets. One of the major challenges in this area is the development of a computationally efficient frame work accommodating both the robot constraints and the complexity of the environment, while, at the same time, allowing for a large spectrum of task specifications.

Published in:

IEEE Robotics & Automation Magazine  (Volume:18 ,  Issue: 3 )