By Topic

A Low-Power 32-Channel Digitally Programmable Neural Recording Integrated Circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wattanapanitch, W. ; Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Sarpeshkar, R.

We report the design of an ultra-low-power 32-channel neural-recording integrated circuit (chip) in a 0.18 μ m CMOS technology. The chip consists of eight neural recording modules where each module contains four neural amplifiers, an analog multiplexer, an A/D converter, and a serial programming interface. Each amplifier can be programmed to record either spikes or LFPs with a programmable gain from 49-66 dB. To minimize the total power consumption, an adaptive-biasing scheme is utilized to adjust each amplifier's input-referred noise to suit the background noise at the recording site. The amplifier's input-referred noise can be adjusted from 11.2 μVrms (total power of 5.4 μW) down to 5.4 μVrms (total power of 20 μW) in the spike-recording setting. The ADC in each recording module digitizes the a.c. signal input to each amplifier at 8-bit precision with a sampling rate of 31.25 kS/s per channel, with an average power consumption of 483 nW per channel, and, because of a.c. coupling, allows d.c. operation over a wide dynamic range. It achieves an ENOB of 7.65, resulting in a net efficiency of 77 fJ/State, making it one of the most energy-efficient designs for neural recording applications. The presented chip was successfully tested in an in vivo wireless recording experiment from a behaving primate with an average power dissipation per channel of 10.1 μ W. The neural amplifier and the ADC occupy areas of 0.03 mm2 and 0.02 mm2 respectively, making our design simultaneously area efficient and power efficient, thus enabling scaling to high channel-count systems.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:5 ,  Issue: 6 )