Cart (Loading....) | Create Account
Close category search window

Uncertainty-Robust Design of Interval Type-2 Fuzzy Logic Controller for Delta Parallel Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Linda, O. ; Univ. of Idaho, Idaho Falls, ID, USA ; Manic, M.

Type-2 Fuzzy Logic Controllers (T2 FLCs) have been recently applied in many engineering areas. While understanding the control potentials of T2 FLCs can still be considered an open question researchers, commonly claim superiority of T2 FLCs based on a limited exploration of the space of design parameters. The contribution of this work is based on a problem-driven design of uncertainty-robust Interval T2 (IT2) FLCs. The presented methodology starts with a baseline optimized T1 FLC. Next, a group of IT2 FLCs is designed using partially dependent approach by symmetrically blurring the membership functions around the original T1 fuzzy sets. This constrained design space allows for its systematic exploration and analysis. The performance of the designed controllers was evaluated on delta parallel robot hardware under two kinds of commonly encountered uncertainties: i) sensory noise and ii) uncertain system parameters. The experimental results showed that IT2 FLCs provide improved control performance against T1 FLCs when appropriate design of IT2 fuzzy sets is performed. In addition, it was demonstrated that excessive amount of “type-2 fuzziness” in the IT2 FLC design leads to rapid performance degradation.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:7 ,  Issue: 4 )

Date of Publication:

Nov. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.