By Topic

A Novel Soft Error Detection and Correction Circuit for Embedded Reconfigurable Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qian Zhao ; Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan ; Yoshihiro Ichinomiya ; Motoki Amagasaki ; Masahiro Iida
more authors

As the size of integrated circuits has reached the nanoscale, embedded memories are more sensitive to single-event upsets (SEUs) or double-event upsets (DEUs), due to their low threshold voltage. In particular, reconfigurable systems, containing a large number of configuration memories to implement customer circuits, are more likely to suffer from soft errors caused by SEUs and DEUs. In this letter, we develop a Hamming code based error detection and correction (EDAC) circuit that can protect the configuration memory of a reconfigurable device from SEUs. Evaluation reveals that compared to the conventional triple modular redundancy (TMR) protected field-programmable gate array (FPGA) tile, the proposed EDAC protected FPGA tile shows about 2.3 times better dependability on the influence of DEUs. Moreover, as the FPGA array size increases, the dependability advantage of EDAC increases exponentially. The main drawback of EDAC is that it has about 1.6 times greater area overhead than TMR.

Published in:

IEEE Embedded Systems Letters  (Volume:3 ,  Issue: 3 )