By Topic

Hybrid Ant Colony-Genetic Algorithm (GAAPI) for Global Continuous Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Irina Ciornei ; KIOS Research Center for Intelligent Systems and Networks and the Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus ; Elias Kyriakides

Many real-life optimization problems often face an increased rank of nonsmoothness (many local minima) which could prevent a search algorithm from moving toward the global solution. Evolution-based algorithms try to deal with this issue. The algorithm proposed in this paper is called GAAPI and is a hybridization between two optimization techniques: a special class of ant colony optimization for continuous domains entitled API and a genetic algorithm (GA). The algorithm adopts the downhill behavior of API (a key characteristic of optimization algorithms) and the good spreading in the solution space of the GA. A probabilistic approach and an empirical comparison study are presented to prove the convergence of the proposed method in solving different classes of complex global continuous optimization problems. Numerical results are reported and compared to the existing results in the literature to validate the feasibility and the effectiveness of the proposed method. The proposed algorithm is shown to be effective and efficient for most of the test functions.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:42 ,  Issue: 1 )