By Topic

THz Imaging Radar for Standoff Personnel Screening

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cooper, K.B. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Dengler, R.J. ; Llombart, N. ; Thomas, B.
more authors

A summary of the NASA Jet Propulsion Laboratory's 675 GHz imaging radar is presented, with an emphasis on several key design aspects that enable fast, reliable through-clothes imaging of person-borne concealed objects. Using the frequency-modulated continuous-wave (FMCW) radar technique with a nearly 30 GHz bandwidth, sub-centimeter range resolution is achieved. To optimize the radar's range resolution, a reliable software calibration procedure compensates for signal distortion from radar waveform nonlinearities. Low-noise, high dynamic range detection comes from the radar's heterodyne RF architecture, low-noise chirp source, and high-performance 675 GHz transceiver. The radar's optical design permits low-distortion fast beam scanning for single-pixel imaging, and a real-time radar image frame rate of 1 Hz is now possible. Still faster speeds are on the horizon as multi-beam THz transceivers are developed.

Published in:

Terahertz Science and Technology, IEEE Transactions on  (Volume:1 ,  Issue: 1 )