Cart (Loading....) | Create Account
Close category search window
 

Silicon-based integrated field emission electron sources for sensor application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Schreiner, R. ; Fac. of Microsyst. Technol., Univ. of Appl. Sci. Regensburg, Regensburg, Germany ; Dams, F. ; Prommesberger, C. ; Bornmann, B.
more authors

We report on the design, fabrication and characterization of p-type silicon field emitter arrays for the application in compact fast switchable electron sources. Since standard silicon technology has been used to prepare the devices, they can be easily integrated with other silicon based sensors and electronic components, too. The emitter arrays consist of approx. 3×105 tips per cm2, with a tip radius less than 20 nm. By using self-aligned processes, an integrated gate electrode with a diameter of ~3 μm was placed concentrically around the tips. A mesh of silicon-beams with a grating period of 100 μm and beam width of 20 μm forms the anode of the electron source. A glass wafer (thickness 300 μm) acts as spacer between anode and Si-tip cathode. Characterization of the field emission properties of the emitter arrays was performed by high resolution field emission scanning microscopy. The emitter arrays exhibit a highly stable and very homogeneous emission. A maximum stable current of 0.1 μA per tip was found. A saturation level in the voltage current characteristics, which was found at around 10 nA, supports current stabilisation and will enable optical modulation of the emission current.

Published in:

Vacuum Nanoelectronics Conference (IVNC), 2011 24th International

Date of Conference:

18-22 July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.