By Topic

Experimental Results of Air Target Detection With a GPS Forward-Scattering Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ion Suberviola ; Fraunhofer IIS, Nuremberg, Germany ; Iker Mayordomo ; Jaizki Mendizabal

Forward-scattering radars (FSRs) acquire great interest when low radar cross section (RCS) targets are willing to be detected. This type of radar provides a countermeasure to stealth technology because, here, the targets' RCS depends only on the size and the shape of their silhouette. Passive radars use transmitters of opportunity as signal source, and they are therefore attractive too, due to their inherit low cost. The advantage of considering Global Navigation Satellite System (GNSS) satellites as transmitters of opportunity is the high availability that these satellites offer. Anywhere on earth, around eight Global Positioning System (GPS) satellites are continuously in view. Due to the large number of new GNSS satellites becoming operational in the near future (American GPS, Russian GLONASS, European Galileo system, and Chinese COMPASS), more than 30 satellites are expected to be constantly in view. This provides an optimum scenario for implementation of a GNSS-FSR system. In this paper, experimental results of a GPS-FSR at different target-receiver scenarios near Nuremberg Airport are analyzed. Disturbances on the signals due to diffraction effects, which take place as the targets cross the receiver-satellite baselines, are discussed and evaluated. For these experiments, a hemispherical antenna has been used, which provides promising results for a future GNSS-FSR implementation.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:9 ,  Issue: 1 )