By Topic

Proactive defense for evolving cyber threats

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Richard Colbaugh ; Sandia National Laboratories, New Mexico Institute of Mining and Technology, Albuquerque, USA ; Kristin Glass

There is significant interest to develop proactive approaches to cyber defense, in which future attack strategies are anticipated and these insights are incorporated into defense designs. This paper considers the problem of protecting computer networks against intrusions and other attacks, and leverages the coevolutionary relationship between attackers and defenders to derive two new methods for proactive network defense. The first method is a bipartite graph-based machine learning algorithm which enables information concerning previous attacks to be “transferred” for application against novel attacks, thereby substantially increasing the rate with which defense systems can successfully respond to new attacks. The second approach involves exploiting basic threat information (e.g., from cyber security analysts) to generate “synthetic” attack data for use in training defense systems, resulting in networks defenses that are effective against both current and (near) future attacks. The utility of the proposed methods is demonstrated by showing that they outperform standard techniques for the task of detecting malicious network activity in two publicly-available cyber datasets.

Published in:

Intelligence and Security Informatics (ISI), 2011 IEEE International Conference on

Date of Conference:

10-12 July 2011