Cart (Loading....) | Create Account
Close category search window

Robust terrain classification by introducing environmental sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kim, T.Y. ; Dept. of Electron. Eng., Chungnam Nat. Univ., Daejeon, South Korea ; Sung, G.Y. ; Lyou, J.

This paper presents a vision-based off-road terrain classification method that is robust despite large environmental variations caused by seasonal or weather changes. In order to account for an overall image feature variation, we adopted environmental sensors, and to train a neural network based classifier, constructed a database according to environmental conditions. Robust classification could be achieved by selecting the training parameter set best suited for each environmental state. Also, we propose a hardware architecture that enables distributed parallel processing for real- time implementation of the present algorithm. Experimental results for real off-road images show that in spite of dissimilar conditions, degradation of classification performance could be minimized by replacing the nearest parameters.

Published in:

Safety Security and Rescue Robotics (SSRR), 2010 IEEE International Workshop on

Date of Conference:

26-30 July 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.