By Topic

On the Benefits of Partial Channel State Information for Repetition Protocols in Block Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Daniela Tuninetti ; Electrical and Computer Engineering Department, University of Illinois at Chicago, Chicago, IL, USA

This paper studies the throughput performance of hybrid automatic repeat request (HARQ) protocols over block fading Gaussian channels. It proposes new protocols that use the available feedback bit(s) not only to request a retransmission, but also to inform the transmitter about the instantaneous channel quality. An explicit protocol construction is given for any number of retransmissions and any number of feedback bits. The novel protocol is shown to simultaneously realize the gains of HARQ and of power control with partial channel state information. Remarkable throughput improvements are shown, especially at low and moderate signal-to-noise ratio (SNR), with respect to protocols that use the feedback bits for retransmission request only. In particular, for the case of a single retransmission and a single feedback bit, it is shown that the repetition is not needed at low SNR where the throughput improvement is due to power control only. On the other hand, at high SNR, the repetition is useful and the performance gain comes from a combination of power control and ability to make up for deep fades.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 8 )