Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Obstacle-Sensitive Trajectory Regulation via Gain Scheduling and Semidefinite Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Farhood, M. ; Dept. of Aerosp. & Ocean Eng., Virginia Polytech. Inst. & State Univ. (Virginia Tech), Blacksburg, VA, USA ; Feron, E.

The regulation of vehicle trajectories in the vicinity of obstacles must focus on “critical outputs,” which vary as a function of the vehicle's position relative to obstacles as exemplified by the task of parking a car. We present an application of linear parameter-varying techniques to address this problem. We design closed-loop stable, parameter-dependent controllers, whose strategy changes depending on the position of the vehicle in the obstacle environment. We also provide a fast and easy-to-implement algorithm for online controller construction. Last, the proposed approach is demonstrated on a three degrees-of-freedom helicopter.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:20 ,  Issue: 4 )