By Topic

Unsupervised Adaptation to On-body Sensor Displacement in Acceleration-Based Activity Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bayati, H. ; Dept. of Non-Invasive Brain-Comput. Interfaces, EPFL, Lausanne, Switzerland ; del R Millan, J. ; Chavarriaga, R.

A common assumption in activity recognition is that the system remains unchanged between its design and its posterior operation. However, many factors can affect the data distribution between two different experimental sessions including sensor displacement (e.g. due to replacement or slippage), and lead to changes in the classification performance. We propose an unsupervised adaptive classifier that calibrates itself to be robust against changes in the sensor location. It assumes that these changes are mainly reflected in shifts in the feature distributions and uses an online version of expectation-maximisation to estimate those shifts. We tested the method on a synthetic dataset as well as on two activity recognition datasets modeling sensor displacement. Results show that the proposed adaptive algorithm is robust against shift in the feature space due to sensor displacement.

Published in:

Wearable Computers (ISWC), 2011 15th Annual International Symposium on

Date of Conference:

12-15 June 2011