Cart (Loading....) | Create Account
Close category search window
 

3D-HIM: A 3D High-density Interleaved Memory for bipolar RRAM design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yi-Chung Chen ; Dept. of ECE, Polytech. Inst. of NYU, Brooklyn, NY, USA ; Hai Li ; Wei Zhang ; Pino, R.E.

Because of its simple structure, high density and good scalability, resistive random access memory (RRAM) is expected to be a promising candidate to substitute traditional data storage devices, e.g., hard-disk drive (HDD). In a conventional three-dimensional (3D) bipolar RRAM design, an isolation layer is inserted between two adjacent memory layers. The fabrication of the isolation layer introduces the extra process complexity, increases fabrication cost, and causes some potential reliability issues. In this paper, we propose a 3D High-density Interleaved Memory (3D-HIM) design for bipolar RRAM, which can eliminate the need for forming isolation layers and further improve the density of the memory island. Meanwhile, we propose a Bi-Group Operation Scheme for 3D-HIM to access multiple cells among multiple layers and to avoid unexpected overwriting. The simulation results show that the proposed design is promising for a 3D stacking RRAM application with acceptable operation margin for a 32 × 32 × 8 array in a memory island. The sensing margin degradation and programming bias confine the size of the array due to sneak path conducting currents. We diminish impact of sneak path conducting current by applying a high Ron RRAM device which can be achieved by a small-scale RRAM device.

Published in:

Nanoscale Architectures (NANOARCH), 2011 IEEE/ACM International Symposium on

Date of Conference:

8-9 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.