By Topic

A Non-Data-Aided Maximum Likelihood Time Delay Estimator Using Importance Sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, we present a new time delay maximum likelihood estimator based on importance sampling (IS). We show that a grid search and lack of convergence from which most iterative estimators suffer can be avoided. It is assumed that the transmitted data are completely unknown at the receiver. Moreover the carrier phase is considered as an unknown nuisance parameter. The time delay remains constant over the observation interval and the received signal is corrupted by additive white Gaussian noise (AWGN). We use importance sampling to find the global maximum of the compressed likelihood function. Based on a global optimization procedure, the main idea of the new estimator is to generate realizations of a random variable using an importance function, which approximates the actual compressed likelihood function. We will see that the algorithm parameters affect the estimation performance and that with an appropriate parameter choice, even over a small observation interval, the time delay can be accurately estimated at far lower computational cost than with classical iterative methods.

Published in:

IEEE Transactions on Signal Processing  (Volume:59 ,  Issue: 10 )