By Topic

Does Afferent Heterogeneity Matter in Conveying Tactile Feedback Through Peripheral Nerve Stimulation?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sung Soo Kim ; Krieger Mind/Brain Inst., Johns Hopkins Univ., Baltimore, MD, USA ; Mihalas, S. ; Russell, A. ; Yi Dong
more authors

One approach to conveying tactile feedback from sensorized neural prostheses is to characterize the neural signals that would normally be produced in an intact limb and reproduce them through electrical stimulation of the residual peripheral nerves. Toward this end, we have developed an integrate-and-fire model that predicts with millisecond accuracy the timing of responses of the mechanoreceptive afferents that innervate the glabrous skin of the hand. Individual afferents produce highly repeatable and stereotyped responses to a given stimulus. However, responses differ considerably across afferents, even across afferents of a given type. In the present study, we wish to assess the extent to which this within-type variability shapes the signal conveyed by the hand to the brain. Specifically, we wish to determine the extent to which a single canonical model can be used to mimic the responses of a population of afferents during a set of activities of daily living. We find that the spiking responses simulated using the canonical model does not match, in their fine temporal structure, those simulated using individually fit models. However, population firing rates simulated using a canonical model match those simulated using individual models. Our results suggest that afferent heterogeneity is important if the read-out of the response of afferent populations is sensitive to the precise temporal structure of the population response. To the extent that precise spike timing (at a resolution of milliseconds) is not essential, a canonical model can be used to simulate the responses of populations of afferents.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 5 )