By Topic

Design and Implementation of Neuro-Fuzzy Vector Control for Wind-Driven Doubly-Fed Induction Generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hany M. Jabr ; Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada ; Dongyun Lu ; Narayan C. Kar

Wound-rotor induction generators have numerous advantages in wind power generation over other types of generators. One scheme is realized when a converter cascade is used between the slip-ring terminals and the utility grid to control the rotor power. This configuration is called the doubly-fed induction generator (DFIG). In this paper, a vector control scheme is developed to control the rotor side voltage source converter that allows independent control of the generated active and reactive power as well as the rotor speed to track the maximum wind power point. A neuro-fuzzy gain tuner is proposed to control the DFIG. The input for each neuro-fuzzy system is the error value of generator speed, active or reactive power. The choice of only one input to the system simplifies the design. Experimental investigations have also been conducted on a laboratory DFIG to verify the calculated results.

Published in:

IEEE Transactions on Sustainable Energy  (Volume:2 ,  Issue: 4 )