Cart (Loading....) | Create Account
Close category search window
 

On the Capacity and Diversity-Multiplexing Tradeoff of the Two-Way Relay Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vaze, R. ; Sch. of Technol. & Comput. Sci., Tata Inst. of Fundamental Res., Mumbai, India ; Heath, R.W.

In a two-way relay channel, two sources use one or more relay nodes to exchange data with each other. This paper considers a multiple input multiple output (MIMO) two-way relay channel, where each relay node has one or more antennas. Optimal relay transmission strategies for the two-way relay channel are derived to maximize the achievable rate with amplify and forward (AF) at each relay and to achieve the optimal diversity-multiplexing tradeoff (DM-tradeoff). To maximize the achievable rate with AF, an iterative algorithm is proposed which solves a power minimization problem subject to minimum signal-to-interference-and-noise ratio constraints at every step. The power minimization problem is nonconvex. The Karush Kuhn Tucker conditions, however, are shown to be sufficient for optimality. Capacity scaling law of the two-way relay channel with increasing number of relays is also established by deriving a lower and upper bound on the capacity region of the two-way relay channel. To achieve the optimal DM-tradeoff, a compress and forward strategy is proposed and its DM-tradeoff is derived. For the full-duplex two-way relay channel, the proposed strategy achieves the optimal DM-tradeoff, while for the half-duplex case the proposed strategy is shown to achieve the optimal DM-tradeoff under some conditions.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 7 )

Date of Publication:

July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.