By Topic

Clustered Mixture Particle Filter for Underwater Multitarget Tracking in Multistatic Active Sonobuoy Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jacques Georgy ; Department of Electrical and Computer Engineering, the Royal Military College of Canada, Kingston, Canada ; Aboelmagd Noureldin ; Garfield R. Mellema

The problem of multitarget tracking in underwater multistatic active sonobuoy systems is challenging because of the large number of false contacts and multiple reflections that reach the receivers. Targeting a robust solution that can track an unknown time-varying number of multiple targets, while keeping continuous tracks even in scenarios with large number of false contacts per ping, a particle filter (PF)-based technique is proposed in this paper. The PF is a nonlinear filtering technique that can accommodate arbitrary sensor characteristics, motion dynamics, and noise distributions. An enhanced version of the PF called the mixture PF is utilized in this paper. While the sampling/importance resampling PF samples from the prior importance density and weights the particles according to the observation likelihood, the mixture PF samples from both importance densities and weights the different groups of particles respectively. The usage of this mixture of importance densities provides better performance and faster convergence to the true targets locations. In order to track an unknown time-varying number of targets, two mixture PFs are used (one for target detection and the other for tracking multiple targets), and a density-based clustering technique. The first filter starts with random uniformly distributed samples over the surveillance area and resets every five pings. Just before the reset, the clustering technique runs to detect the clusters that corresponds to different targets and passes them to the second filter. The performance of the proposed technique is examined and demonstrated by different simulated scenarios and some real datasets from the SEABAR07 trial by the NATO Underwater Research Center.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:42 ,  Issue: 4 )