Cart (Loading....) | Create Account
Close category search window

Graduated nonconvexity by functional focusing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nielsen, M. ; 3D Lab., Sch. of Dentistry, Copenhagen, Denmark

Reconstruction of noise-corrupted surfaces may be stated as a (in general nonconvex) functional minimization problem. For functionals with quadratic data term, this paper addresses the criteria for such functionals to be convex, and the variational approach for minimization. I present two automatic and general methods of approximation with convex functionals based on Gaussian convolution. They are compared to the Blake-Zisserman graduated nonconvexity (GNC) method (1987) and Bilbro et al. (1992) and Geiger and Girosi's (1991) mean field annealing (MFA) of a weak membrane

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 5 )

Date of Publication:

May 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.