By Topic

Segmentation of random fields via borrowed strength density estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Priebe, C.E. ; Dept. of Math. Sci., Johns Hopkins Univ., Baltimore, MD, USA ; Marchette, D.J. ; Rogers, G.W.

In many applications, spatial observations must be segmented into homogeneous regions and the number, positions, and shapes of the regions are unknown a priori. Information about the underlying probability distributions are often unknown. Furthermore, the anticipated regions of interest may be small with few observations from the individual regions. This paper presents a technique designed to address these difficulties. A simple segmentation procedure can be obtained as a clustering of the disjoint subregions obtained through an initial low-level partitioning procedure. Clustering of these subregions based upon a similarity matrix derived from estimates of their marginal probability density functions yields the resultant segmentation. It is shown that this segmentation is improved through the use of a “borrowed strength” density estimation procedure wherein potential similarities between the density functions for the subregions are exploited. The borrowed strength technique is described and the performance of segmentation based on these estimates is investigated through an example from statistical image analysis

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 5 )