By Topic

A comparative analysis of methods for pruning decision trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
F. Esposito ; Dipartimento di Inf., Bari Univ. ; D. Malerba ; G. Semeraro ; J. Kay

In this paper, we address the problem of retrospectively pruning decision trees induced from data, according to a top-down approach. This problem has received considerable attention in the areas of pattern recognition and machine learning, and many distinct methods have been proposed in literature. We make a comparative study of six well-known pruning methods with the aim of understanding their theoretical foundations, their computational complexity, and the strengths and weaknesses of their formulation. Comments on the characteristics of each method are empirically supported. In particular, a wide experimentation performed on several data sets leads us to opposite conclusions on the predictive accuracy of simplified trees from some drawn in the literature. We attribute this divergence to differences in experimental designs. Finally, we prove and make use of a property of the reduced error pruning method to obtain an objective evaluation of the tendency to overprune/underprune observed in each method

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:19 ,  Issue: 5 )