Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Reactive Power Management of a DFIG Wind System in Microgrids Based on Voltage Sensitivity Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aghatehrani, R. ; Dept. of Electr. & Comput. Eng., North Dakota State Univ., Fargo, ND, USA ; Kavasseri, R.

This paper addresses the problem of voltage regulation in microgrids that include doubly fed induction generator (DFIG)-based wind generation. Due to significant line resistances in microgrids, active power variations produced by wind turbines can lead to significant fluctuations in voltage magnitudes. This paper proposes a voltage sensitivity analysis-based scheme to achieve voltage regulation at a target bus in such microgrids. The target voltage can be of an important central bus, or a bus with sensitive voltage loads. The method is local and can be implemented in the absence of a widespread communication system or remote measurements. The performance of the method is illustrated on the IEEE-13 bus distribution network. Dynamic models are considered for the DFIG, converters, and internal controllers along with their operational limits. Stochastic fluctuations in wind speed are modeled with NREL Turbsim while accounting for tower shadow and wind shear. Dynamic simulations (in PSCAD/EMTDC) are presented to assess the voltage regulation characteristics under different load conditions and network contingencies.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:2 ,  Issue: 4 )