By Topic

Fully 3D PET image reconstruction using a Fourier preconditioned conjugate-gradient algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fessler, J.A. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Ficaro, E.P.

Since the data sixes in fully 3D PET imaging are very large, iterative image reconstruction algorithms must converge in very few iterations to be useful. One can improve the convergence rate of the conjugate-gradient (CG) algorithm by incorporating preconditioning operators that approximate the inverse of the Hessian of the objective function. If the 3D cylindrical PET geometry were not truncated at the ends, then the Hessian of the penalized least-squares objective function would be approximately shift-invariant, i.e. G'G would be nearly block-circulant, where G is the system matrix. The authors propose a Fourier preconditioner based on this shift-invariant approximation to the Hessian. Results show that this preconditioner significantly accelerates the convergence of the CG algorithm with only a small increase in computation

Published in:

Nuclear Science Symposium, 1996. Conference Record., 1996 IEEE  (Volume:3 )

Date of Conference:

2-9 Nov 1996