By Topic

A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
M. Sipper ; Logic Syst. Lab., Swiss Federal Inst. of Technol., Lausanne, Switzerland ; E. Sanchez ; D. Mange ; M. Tomassini
more authors

If one considers life on Earth since its very beginning, three levels of organization can be distinguished: the phylogenetic level concerns the temporal evolution of the genetic programs within individuals and species, the ontogenetic level concerns the developmental process of a single multicellular organism, and the epigenetic level concerns the learning processes during an individual organism's lifetime. In analogy to nature, the space of bio-inspired hardware systems can be partitioned along these three axes-phylogeny, ontogeny and epigenesis (POE)-giving rise to the POE model. This paper is an exposition and examination of bio-inspired systems within the POE framework, with our goals being: (1) to present an overview of current-day research, (2) to demonstrate that the POE model can be used to classify bio-inspired systems, and (3) to identify possible directions for future research, derived from a POE outlook. We discuss each of the three axes separately, considering the systems created to date and plotting directions for continued progress along the axis in question

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:1 ,  Issue: 1 )