By Topic

Evolving artificial neural networks to combine financial forecasts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. G. Harrald ; Inst. of Sci. & Technol., Univ. of Manchester Inst. of Sci. & Technol., UK ; M. Kamstra

We conduct evolutionary programming experiments to evolve artificial neural networks for forecast combination. Using stock price volatility forecast data we find evolved networks compare favorably with a naive average combination, a least squares method, and a kernel method on out-of-sample forecasting ability-the best evolved network showed strong superiority in statistical tests of encompassing. Further, we find that the result is not sensitive to the nature of the randomness inherent in the evolutionary optimization process

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:1 ,  Issue: 1 )