By Topic

Predictive Speed Control of a Two-Mass System Driven by a Permanent Magnet Synchronous Motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fuentes, E.J. ; Electron. Eng. Dept., Univ. Tec. Federico Santa Maria, Valparaiso, Chile ; Silva, C.A. ; Yuz, J.I.

This paper presents a predictive strategy for the speed control of a two-mass system driven by a permanent magnet synchronous motor (PMSM). The proposed approach allows to manipulate all the system variables simultaneously, including mechanical and electrical variables in a single control law. The state feedback is achieved with a reduced order extended Kalman filter, which observes the non-measured variables as well as reduces the impact of measurement noise. The performance of the control strategy is shown through simulation and experimental results in a 4 [kW] laboratory prototype.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 7 )