By Topic

Near-infrared, laser-induced fluorescence detection for DNA sequencing applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Soper, Steven A. ; Dept. of Chem., Louisiana State Univ., Baton Rouge, LA, USA ; Flanagan, J.H., Jr. ; Legendre, Benjamin L. ; Williams, Daryl C.
more authors

Laser-induced fluorescence detection has become the detection strategy of choice in many large-scale DNA sequencing applications due to its ease of Implementation, sensitivity and the ability to identify the constituent bases of DNA in a single separation lane when the probes used have a distinct spectral characteristic. While the common strategy is to use fluorescent dyes which show absorption and emission properties in the visible region (400-600 nm) of the electromagnetic spectrum, our efforts have been directed toward developing near-IR (700-1000 nm) fluorescence as a viable detection strategy for DNA sequencing. In this paper, we discuss our results concerning the use of near-IR fluorescence detection for DNA sequencing carried out in a capillary gel column, where the capillary column has an internal diameter of 75 μm, and the loading level of DNA onto this column is in the nL regime, requiring ultra-sensitive detection. In addition, we discuss our efforts toward the development of a highly efficient, single lane, single fluor, base-calling strategy using lifetime discrimination of heavy-atom modified near-IR dyes. The dyes developed for this application contain an intramolecular heavy atom (halogen) on a remote section of the chromophore, resulting in a perturbation in the fluorescence lifetime without altering the absorption or emission maximum of the base chromophore. This will allow the dye series to be excited with a single laser with the fluorescence processed on a single detector and the identity of the terminal base accomplished via lifetime discrimination. In order to effectively carry out lifetime measurements during capillary electrophoretic separation of the oligonucleotides, a simple solid-state time-correlated single photon counting instrument was constructed

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:2 ,  Issue: 4 )