By Topic

Newly-Constructed Simplified Single-Phase Multistring Multilevel Inverter Topology for Distributed Energy Resources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yi-Hung Liao ; Dept. of Electr. Eng., Nat. Penghu Univ. of Sci. & Technol., Penghu, Taiwan ; Ching-Ming Lai

In the microgrid system, the distributed energy resource (DER)-based single-phase inverter is usually adopted. In order to reduce conversion losses, the key is to save costs and size by removing any kind of transformer as well as reducing the power devices. The objective of this letter is to study a novel five-level multistring inverter topology for DERs-based dc/ac conversion system. In this study, a high step-up converter is introduced as a front-end stage to improve the conversion efficiency of conventional boost converters and to stabilize the output dc voltage of various DERs such as photovoltaic and fuel cell modules for use with the simplified multilevel inverter. The simplified multilevel inverter requires only six active switches instead of the eight required in the conventional cascaded H-bridge multilevel inverter. In addition, two active switches are operated at the line frequency. The studied multistring inverter topology offers strong advantages such as improved output waveforms, smaller filter size, and lower electromagnetic interference and total harmonics distortion. Simulation and experimental results show the effectiveness of the proposed solution.

Published in:

IEEE Transactions on Power Electronics  (Volume:26 ,  Issue: 9 )