Cart (Loading....) | Create Account
Close category search window
 

Decision Fusion Over Noncoherent Fading Multiaccess Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feng Li ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Parkville, VIC, Australia ; Evans, J.S. ; Dey, S.

In this paper, we consider a distributed detection scenario where a number of remote sensors is linked to a decision fusion center by a fading multiaccess channel. The communication is assumed to be noncoherent meaning that channel gains are unknown at both sensors and the fusion center. Each sensor makes a binary local decision and communicates it to the fusion center simultaneously. We investigate the detection performance of the system in terms of error probability and error exponent under both Rayleigh and Rician fading scenarios. We reveal that on-off keying is the most energy efficient modulation scheme when the channel is subject to Rayleigh fading and that optimizing the modulation scheme can lead to a gain in error exponent under Rician fading scenario. Under both fading scenarios, optimal decision fusion rules can be reduced to simple threshold tests.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.