By Topic

An energy-efficient quality adaptive framework for multi-modal sensor context recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nirmalya Roy ; Inst. for Infocomm Res., Singapore, Singapore ; Misra, A. ; Julien, C. ; Das, S.K.
more authors

In pervasive computing environments, understanding the context of an entity is essential for adapting the application behavior to changing situations. In our view, context is a high-level representation of a user or entity's state and can capture location, activities, social relationships, capabilities, etc. Inherently, however, these high-level context metrics are difficult to capture using uni-modal sensors only, and must therefore be inferred with the help of multi-modal sensors. However a key challenge in supporting context-aware pervasive computing environments, is how to determine in an energy-efficient manner multiple (potentially competing) high-level context metrics simultaneously using low-level sensor data streams about the environment and the entities present therein. In this paper, we first highlight the intricacies of determining multiple context metrics as compared to a single context, and then develop a novel framework and practical implementation for this problem. The proposed framework captures the tradeoff between the accuracy of estimating multiple context metrics and the overhead incurred in acquiring the necessary sensor data stream. In particular, we develop a multi-context search heuristic algorithm that computes the optimal set of sensors contributing to the multi-context determination as well as the associated parameters of the sensing tasks. Our goal is to satisfy the application requirements for a specified accuracy at a minimum cost. We compare the performance of our heuristic based framework with a brute-forced approach for multi-context determination. Experimental results with SunSPOT sensors demonstrate the potential impact of the proposed framework.

Published in:

Pervasive Computing and Communications (PerCom), 2011 IEEE International Conference on

Date of Conference:

21-25 March 2011