By Topic

Tracking vehicular speed variations by warping mobile phone signal strengths

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Gayathri Chandrasekaran ; WINLAB, Rutgers University, North Brunswick, NJ 08902, USA ; Tam Vu ; Alexander Varshavsky ; Marco Gruteser
more authors

In this paper, we consider the problem of tracking fine-grained speeds variations of vehicles using signal strength traces from GSM enabled phones. Existing speed estimation techniques using mobile phone signals can provide longer-term speed averages but cannot track short-term speed variations. Understanding short-term speed variations, however, is important in a variety of traffic engineering applications-for example, it may help distinguish slow speeds due to traffic lights from traffic congestion when collecting real time traffic information. Using mobile phones in such applications is particularly attractive because it can be readily obtained from a large number of vehicles. Our approach is founded on the observation that the large-scale path loss and shadow fading components of signal strength readings (signal profile) obtained from the mobile phone on any given road segment appear similar over multiple trips along the same road segment except for distortions along the time axis due to speed variations. We therefore propose a speed tracking technique that uses a Derivative Dynamic Time Warping (DDTW) algorithm to realign a given signal profile with a known training profile from the same road. The speed tracking technique then translates the warping path (i.e., the degree of stretching and compressing needed for alignment) into an estimated speed trace. Using 6.4 hours of GSM signal strength traces collected from a vehicle, we show that our algorithm can estimate vehicular speed with a median error of ± 5mph compared to using a GPS and can capture significant speed variations on road segments with a precision of 68% and a recall of 84%.

Published in:

Pervasive Computing and Communications (PerCom), 2011 IEEE International Conference on

Date of Conference:

21-25 March 2011