By Topic

Bistable Antagonistic Dielectric Elastomer Actuators for Binary Robotics and Mechatronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Patrick Chouinard ; Université de Sherbrooke, Sherbrooke, Canada ; Jean-S├ębastien Plante

Binary systems can lead to simple and efficient robotic and mechatronic systems since such systems use a large number of simple bistable actuators to affect its state. Dielectric elastomer actuators (DEAs) are prime candidates for use in binary systems since they are simple, low cost, and lightweight. However, previously proposed bistable DEAs (flip-flop) have relatively low volumetric energy density that limits their use in practical devices. This paper investigates the potential of improving the energy density of bistable designs by employing DEAs in compact antagonistic configurations. To do so, two antagonistic configurations (linear and rotating) are designed and studied using an experimentally validated Bergstrom–Boyce viscoelastic material model. The proposed antagonistic configurations show up to ∼10× higher volumetric energy densities than flip-flop designs. This represents a significant advantage for DEA reliability, since, based on volumetric energy density, antagonist actuators require the manufacturing of significantly less film layers than flip-flop designs. This study also reveals that, in the design of antagonistic DEAs, limiting the polymer film's actuation stretch minimizes viscoelastic losses and allows higher actuation speeds and power outputs for a given actuator stroke and size.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:17 ,  Issue: 5 )