Cart (Loading....) | Create Account
Close category search window
 

Reduced-Order Transfer Matrices From RLC Network Descriptor Models of Electric Power Grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Freitas, F.D. ; Dept. of Electr. Eng., Univ. of Brasilia, Brasilia, Brazil ; Martins, N. ; Varricchio, S.L. ; Rommes, J.
more authors

This paper compares the computational performances of four model order reduction methods applied to large-scale electric power RLC networks transfer functions with many resonant peaks. Two of these methods require the state-space or descriptor model of the system, while the third requires only its frequency response data. The fourth method is proposed in this paper, being a combination of two of the previous methods. The methods were assessed for their ability to reduce eight test systems, either of the single-input single-output (SISO) or multiple-input multiple-output (MIMO) type. The results indicate that the reduced models obtained, of much smaller dimension, reproduce the dynamic behaviors of the original test systems over an ample range of frequencies with high accuracy.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 4 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.