By Topic

Nanostructure and magnetic properties of c-axis oriented L10-FePt nanoparticles and nanocrystalline films on polycrystalline TiN underlayers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Tsuji, Yoshiko ; Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ; Noda, Suguru ; Nakamura, Shinichi

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.3575155 

We performed a systematic study of the nanostructure and magnetic properties of FePt on templates of either (200)-oriented polycrystalline TiN underlayers with in-plane grain sizes from 5.8 to 10 nm (poly-TiN) or highly (200)-textured TiN underlayers epitaxially grown on single-crystalline MgO (100) substrates (epi-TiN). For small nominal FePt thicknesses (0.7–8.0 nm), FePt forms particulate films with the magnetic easy axis perpendicular to the film plane on every template TiN underlayer. In addition, the coercivity of nominally 1.4-nm-thick FePt at 300 K in the out-of-plane direction increases from 5.3 kOe for 5.8-nm-sized poly-TiN to 12.9 kOe for 10-nm-sized poly-TiN and reaches 16.3 kOe for epi-TiN, which shows that the coercivity strongly depends on the degree of the c-axis orientation. For larger FePt nominal thicknesses (16–64 nm), FePt particles percolate and form continuous films, and the direction of the easy magnetic easy axis becomes random. The coercivity of nominally 64-nm-thick FePt at 300 K in the out-of-plane direction is still as large as 8.8 kOe for 10-nm-sized poly-TiN, but it drastically decreases to 0.5 kOe for epi-TiN. The absence of in-plane texture in the FePt layer on the poly-TiN suppresses the decrease in coercivity, which prevents domain-wall displacement.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:29 ,  Issue: 3 )