Cart (Loading....) | Create Account
Close category search window
 

RSD: A Metric for Achieving Range-Free Localization beyond Connectivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ziguo Zhong ; Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Tian He

Wireless sensor networks have been considered as a promising tool for many location-dependent applications. In such deployments, the requirement of low system cost prohibits many range-based methods for sensor node localization; on the other hand, range-free approaches depending only on radio connectivity may underutilize the proximity information embedded in neighborhood sensing. In response to these limitations, this paper introduces a proximity metric called RSD to capture the distance relationships among 1-hop neighboring nodes in a range-free manner. With little overhead, RSD can be conveniently applied as a transparent supporting layer for state-of-the-art connectivity-based localization solutions to achieve better accuracy. We implemented RSD with three well-known algorithms and evaluated using two outdoor test beds: an 850-foot-long linear network with 54 MICAz motes, and a regular 2D network covering an area of 10,000 square feet with 49 motes. Results show that our design helps eliminate estimation ambiguity with a subhop resolution, and reduces localization errors by as much as 35 percent. In addition, simulations confirm its effectiveness for large-scale networks and reveal an interesting feature of robustness under unevenly distributed radio path loss.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.