By Topic

A Network of Dynamic Probabilistic Models for Human Interaction Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heung-Il Suk ; Dept. of Comput. Sci. & Eng., Korea Univ., Seoul, South Korea ; Jain, A.K. ; Seong-Whan Lee

We propose a novel method of analyzing human interactions based on the walking trajectories of human subjects, which provide elementary and necessary components for understanding and interpretation of complex human interactions in visual surveillance tasks. Our principal assumption is that an interaction episode is composed of meaningful small unit interactions, which we call “sub-interactions”. We model each sub-interaction by a dynamic probabilistic model and propose a modified factorial hidden Markov model (HMM) with factored observations. The complete interaction is represented with a network of dynamic probabilistic models (DPMs) by an ordered concatenation of sub-interaction models. The rationale for this approach is that it is more effective in utilizing common components, i.e., sub-interaction models, to describe complex interaction patterns. By assembling these sub-interaction models in a network, possibly with a mixture of different types of DPMs, such as standard HMMs, variants of HMMs, dynamic Bayesian networks, and so on, we can design a robust model for the analysis of human interactions. We show the feasibility and effectiveness of the proposed method by analyzing the structure of network of DPMs and its success on four different databases: a self-collected dataset, Tsinghua University's dataset, the public domain CAVIAR dataset, and the Edinburgh Informatics Forum Pedestrian dataset.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:21 ,  Issue: 7 )