By Topic

A wideband spectrum sensing method for cognitive radio using sub-Nyquist sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rashidi, M. ; Dept. of Signals & Syst., Chalmers Univ. of Technol., Gothenburg, Sweden ; Haghighi, K. ; Owrang, A. ; Viberg, M.

Spectrum sensing is a fundamental component in cognitive radio. A major challenge in this area is the requirement of a high sampling rate in the sensing of a wideband signal. In this paper a wideband spectrum sensing model is presented that utilizes a sub-Nyquist sampling scheme to bring substantial savings in terms of the sampling rate. The correlation matrix of a finite number of noisy samples is computed and used by a subspace estimator to detect the occupied and vacant channels of the spectrum. In contrast with common methods, the proposed method does not need the knowledge of signal properties that mitigates the uncertainty problem. We evaluate the performance of this method by computing the probability of detecting signal occupancy in terms of the number of samples and the SNR of randomly generated signals. The results show a reliable detection even in low SNR and small number of samples.

Published in:

Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), 2011 IEEE

Date of Conference:

4-7 Jan. 2011