By Topic

Shear-horizontal waves in a rotated Y-cut quartz plate with an imperfectly bonded mass layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yangyang Chen ; Ningbo University, China ; Jianke Du ; Ji Wang ; Jiashi Yang

We study shear-horizontal (SH) waves in an unbounded plate of rotated Y-cut quartz carrying a thin mass layer imperfectly or nonrigidly bonded to the surface of the quartz plate. The imperfect interface is described by the so-called shear-lag model that allows the displacement to be discontinuous across the interface. A transcendental frequency equation that determines the dispersion relations of the waves is obtained. Exact and approximate solutions to the frequency equation are presented. The effects of the mass layer and the imperfect interface on the dispersion relations are examined. A quantitative criterion is given which distinguishes whether the combined effect of the mass layer and the imperfect interface raises or lowers the wave frequencies.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:58 ,  Issue: 3 )